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INTRODUCTION

It must be with some trepidation that one ventures to speak about the

problems of linear estimation to an audience already well familiar with the

overwhelmingly more difficult nonlinear filtering problem. However, perhaps to

compensate for this spectacle, the organizers have given me the opportunity to

speak first, with considerable latitude in the choice of my topics.

For such an audience, there will be no need to present a tutorial on linear

filtering, especially of the Kalman-Bucy type. I chose, therefore, to focus on

some aspects generally less familiar to those with a 'modern' control theory

background, i.e.. largely a state-space background. In particular, we shall begin

with a discussion of integral equations and of the important Wiener-Hopf tech-

nique. We shall specialize this to stationary processes over infinite intervals, and

then describe some alternative, often computationally better, solution methods

of Ambartzumian-Chandrasekhar and Krein-Levinson for finite-interval prob-

lems. For nonstationary processes, we start first with state-space models and

build up to a brief description of the scattering theory framework for linear esti-

mation. This will then lead us to nonstationary versions of the Ambartzumian-
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Chandrasekhar and Krein-Levinson equations, which we shall only consider very

briefly, providing detailed references for further reading. We shall conclude with

a remark on a possible implication for nonlinear filtering.

Our presentation is confined to continuous-time processes; a recent survey

of the discrete-time case can be found in Kailath (1980).

In writing this chapter, it was a great help to have a carefully prepared prel-

iminary reduction of the actual lectures, contributed by B. Hanzon, B. Ursin and

D. Ocone. It is a pleasure also to thank M. Hazewinkel for these and several

other organizational touches that made for an outstanding symposium.

Iz
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1. The Integral Equations of Smoothing and Filtering

Our estimation problems will be discussed in the context of the following

model for the observed random process Jyt J:

yj =z, +vs ,Ot T ()

where zs and vs are RP-valued stochast.ic variables with mean zero, and such

that t

E , ,,:=IP, (t-s),

where 6 is the Dirac-delta distribution, and

E(zjz, + ztv + 'vtz) := K(ts)

a continuous function on [0, T]x[O.T]. This model describes a situation in which

a signal, zi , can only be observed with additive white noise vs. We note that

K(t,s) does not have to be a covariance function; it is necessary only that

R(t,s) := E ygy. = I, 6(t - s) + K(t,s)

be a covariance function.

It will be useful to consider two special cases:

(i) v_z. for all s,t with Os.;T, Oat<-T. In this case K(t,s)=E zsz is a

covariance function

(ii) vs .z, for all t >s. This possibility allows causal dependence of z on y

(feedback!).

1. The Smoothing Problem: F redholm Equations

The smoothing problem is as follows. Given the observations :Oes!_Tj,

find

t No special notation will be used to indicate matrix on vector quantities. Primes will denote
tranuposes and E denotes expectation.
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;tir = f H(t.s),. ds (2a)

such that E(zj-;,r)'(zI-;8IT) is minimum, where the minimization is taken

over all matrix-valued functions H(t ,s) of v, with t fixed, in the Hilbert space

L2[0,T]. It is well known that the following holds.

Theorem: A necessary and sufficient condition for the solution of this smoothing

problem is

E(z, -ztT)3- = 0 for all s v[0, T] (2b)

Put differently: every component of z, 4Ir must be orthogonal to every com-

ponent y, for all s e[0,T]. where the orthogonality is induced by the inner

product (a,b):=E ab, a and b scalar stochastic variables.

Suppose now further that the special case (i) holds, namely that zi is

orthogonal to v. for all s,t with 0 s T, 0%te-T. Then the condition (2b) leads

to the equation

T

H(t,s) + f h(t,r)K(T,s) d'r z K(t,.T), 0!9 s.t t- T (3)
0

This is a Fredholm equation of the second kind (see, e.g.. Courant and Hilbert,

Vol. 1, Ch. I1) and the solution H(ts) is called the Predvlmn resolvent of

K(t,s) on [0,T]x[0,T]. Introduce the following operator notation:

r
HK is defined as (HK)(t,s) f H(tT)K(r,s) dr.

and I is the identity operator with kernel I(t,s) = Ip d(t -s), In this notation

the equation (3) can be written as

H + HK = K (4a)

or in the equivalent forms
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(l-H)(l K)=I=(l 4-K)(I -H). (4b)

Clearly P-H is the inverse, in the sense of the "operator multiplication' that we

have just defined, of i+K . Note that in this case of complete orthogonality of

ag and v., the smoothing filter is precisely the resolvent of K.

How can the resolvent be computed? One answer is provided by the so-

called Mercer expansion of K(t ,s) (see, e.g., Riesz and Nagy, p. 245. we use a~l

extension to the vector case):

where the 1
0i are vector-valued orthGnormal eigenfunctions of the operator K

with eigenvalue rp:

T
f ~,rV()dT=X~jt i =1.2. 0, t i;T (5b,)

Then it can be seen easily that the Fredholm resolvent of K can be written as

H(t,s) N ~/ 1 + k)pi(t)P(s) (6)

lb. The Filtering Problem: Wiener-Hopt Equations

In the special case that T=t. the smoothing problem becomes what is

known as a filterinLg problem. We shall assume further that we are in one of the

special cases (i) and (ii). viz., that v, is either orthogonal to z, for all s ,t or

just for all s<t. The filtered estimate can be written

! =l f h(t,s)y. els (7)
0

where h(t,s) satisfies

0
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Note that for each fixed t, we have a smoothing problem. The point is now

that we have a collection of Fredholm integral equations, one for each value of

t, and unlike as in (3) is more than just an indexing parameter in the family of

equations. The filtering integral equation is said to be of "Wiener-Hop type"

rather than of "Fredholm type" and the solution can not be as simply expressed

in terms of Mercer expansions as in the smoothing problem.

In one sense then, smoothing appears to be "easier" than filtering, a state-

ment counter to the intuition current in the Kalman-Bucy state-space theory

(see, e.g.. Meditch (1969) and also the discussion following (15b) below). How-

ever, the following facts give some justification to this claim:

I. In the Wiener theory of estimation of stationary processes over infinite

(smoothing) or semi-infinite (filtering) intervals, the smoothing solution is

readily determined by Fourier transformation, while the filtering solution

requires the more difficult Wiener-Hopf technique (further elaborated

below).

2. In estimation given a fixed time-interval, smoothing can be implemented

with time invariant filters (convolutions or fast Fourier transforms, see

Levy, Kailath, Ljung and Morf (1979)), while this will never be true for filter-

ing.

le. The Generalized Wiener-ilopf Technique

Wiener-Hopf equations first appeared in astrophysics and radiative transfer

theory around 1900. In 1931, Wiener and Hopf invented an ingenious method for

solving the equation, and it has since borne their name. Their so-called Wiener-

Hopf technique plays a central role in linear filtering theory, and we will present

it briefly here, both as a framework for later discussion and as a service to our

state-space friends who mignt conceivably have never seen it! The technique
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was originally developed for difference (or convolution) kernels R; here we

scribe a generalized form (for arbitrary kernels) that captures the main idea.

To focus on the main idea. the treatment will leave aside technical issues

(hypotheses on kernel functions, specification of function spaces, etc.) that are

needed to build a rigorous theory (see, for example, Devinatz and Shinbrot

(1967) and Gohberg and Feldman (1974)). To describe the technique, we first

develop an operator notation for (8) that expresses the constraint s!_t. Thus if

L is an integral operator associated with the kernel L(t ,s), define

+f(t) := f L(t,s)ltf (s) dls

with

L(t,s) if s -t
Lt~~l:=0 it S >t

Accordingly, define II+:=!. [{+ is called the causalpart of L. With this nota-

tion the Wiener-Hopf equation (8) becomes

JhRj+ = Kj+, (9)

As only the values of h(t,s) for s!-t play a role in this problem, h(t ,s) can be

(and will be) taken equal to its causal part. h=jh +. We assume that

R=I+K, R=R', R is positive definite as a kernel, and K does not contain I

term (alternatively: I, 6(t-s) does not appear in K(t,s)).

The key idea of the method of Wiener and Hopf (1931) is to assume that R

can be suitably factored. In our case, as

R = R112R °/
2,

where R
1 2 is a causai and causally invertible operator, that is, R'/='R11 2 j

and R-"12:=[R"12
j

-
1 exists and satisfies R-112=1R1/2J.. Here R "

'
2 denotes

the adjoint of R'", that is R° 5 (t ,s)=R'12 (st) ' Such an R112 is called the
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canonical factor of R, and when it exists it will be unique as a consequence of

the causal and causally invertible requirement. [Observe that, despite the nota-

tion, R"1 2 is not the traditional operator-theoretic (symmetric) square root of

a positive operator.]

Now make the simple but crucial observation that if h solves (9). there

must exist some function g such that

gj+=O and hR =K+g . (10)

Here g is strictly anti-causal, i.e., it does not have any I component. Multiply-

ing (10) on the right by R -
*

2 , we have

hR I 1 2 = KR
- ' 2 

+ gR
-  i)

Now apply + to both sides of (11). Since h is causal and R 1/ 2 is causal and

since the composition of two causal operators is again causal, hR 1/ 2j+=hW1 2.

Likewise the composition of a strictly anti-causal operator (g) with an anti-

causal operator (R'
/ 2

) is strictly anti-causal; (R '/2=(R 1/
2
)1 is anti-causal

since R - 112 is causal). Thus gR-/2;'=0. The end result is hR'12=KR "/21,,

or

h = KR-"2J+R-1/2 (12)

This is the solution of the Wiener-Hopf equation.

However, we have not really so far used the assumption that R has the spe-

cial form R=I+K Fur this case further important results are available from

canonical factorization First observe that, since K=R-J,

h = J(R - I)R "
2

] R -I/2

= R' 1 2 - R- "/2 1,R-1 /2

= I - .R-'121.R
- 1

1
2

(13)
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However, when R=I+K, Rf'2 must have the form R" 2=+h, where h is some

strictly causal operator, and so also R-1" 2 must have the form R-' 2=l+L,

where I is strictly causal. Therefore, [R' 2 ,=Jl+l14 ,=!, since C is strictly

anti-causal. Hence (13) reduces to

h =I-R- 1/2 (14)

This striking formula has several interesting implications

First. and most important, it shows that for this problem canonical factori-

zation and filtering are equivalent problems; h is immediately determined if

R -1/ 2 is known and vice versa.

Secondly, if R -1/2 is applied as a filter to y, we have

R-'/ y = (I -h)y =y -

Since y=z+v', is the estimate of y, given y, s<t I, so that it is reasonable

to expect that yt -it , the new information or innovation process, is a white

noise process, consistent with the calculation

<R-1/2yR-1/2y> = R 1/2<y,y>R-*/2 = 
R -1/ 2

RR / 2 = I

This result can be rigorously established under quite general conditions (see

Kailath (1968), Kailath (1971), Meyer (1972)).

Id. A Resolvent Identity relating Smoothing and Fliltering

Recall the Fredholm resolvent of K, defined by !-H=(I+K) 1=R-. By vir-

tue of (14), we can write

I - H = R-*2R
-
1

2 
= (I - h)(I - h) (ISa)

which immediately yields the nice formula

H = h" + h -h'h (15b)

This is actually an old identity, known by tie early 1950's when it was
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discovered, in a differential version, independently by Siegert, Krein, Bellman

and others (see references in Kailath (1974)),

Now when the signal and noise are completely uncorrelated, we saw earlier

(cf. (4b)) that the Fredholm resolvent H is just the smoothing filter, the iden-

tity (15) then shows that the causal filter h determines the smoothing filter.

This seems to contradict the remarks we made in Section 2b about the relative

difficulties of smoothing and filtering as they appeared from thinking of the

Wiener-Hopf equation as an infinite family of Fredholm equations In the

approach via canonical factorization, it would appear that filtering comes first,

and then smoothing. In Sec. 3d, which describes a scattering theory approach,

this sequence will again be reversed.

We shall illustrate these different relationships between filtering and

smoothing by considering several specific examples in the next two sections.
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2. Some Kxamples -Stationary Processes

2&. Scalar Stationary Proceses Over Infinit~e Intervals

These problems were studied by Wiener. Kolmogorov and Krein For a con-

cise exposition of Wiener's work, see a paper- by N. levinson ( 1947). reprinted as

Appendix C of Wiener- (.W49). The papers of Kolmogorov and Krein arc repri! e

in Kailath (!1977).

We suppose yj, zi. v, to be scalar and stationary, then R(t .s)-R'kt -s)

We assume the existence of

S"M ~ ~~ f )(iW R(t)e-j" dt

the Fourier transform of Re(l), where j is the imaginary unit. ~o is nonne-

gative (for real c)) and is known as the power spectral density of the process y

Wife assumne further that

2n S _W) < (16)f +2

If this is not the case, then Kolmogorov and Wiener showed that y, can be

predicted perfectly from its own past (see, e.g., Doob (1953), Ch. 12)

Under this assumption the canonical factorization of R(1) over

cor-responds to a factorization of S,(w) as

sM= Sy,(CO)Si, M7)

where S,'(r+) is analytic and bounded in the right half plane (7>0 SY is

analytic in the left half plane and

sy (a+ j ) = y* ( -j7,1)

It can be shown that (see. e g ,Solodovriikov (:360))
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s( (1 OPOM (18)

where 0(w) is the Hilbert transform of In / - -.

In the case that .5,(w+ia) is rational, S,*(c+ia) can be found as follows:

Sv*(w + ja) = constant x Monic polynomial of left half plane zeros) x (19)

(Monic polynomial of all left half plane poles)-'.

This follows immediately from the fact that S*(u+jw) and 1/S,(a+jc) must

be analytic in the upper half plane a>0, and from (17a). Note that (17a)

implies - because R(t) is real Therefore,

Now the canonical causal factor (see the text between (9) and (10)) can be

found as

R1/2 = F -'lj S(w)j (20)

the inverse Fourier transform of S,(w). The optimal filter (see (14)) is then

equal to

h = F- i- SM.) (21)

How About Smoothing?

Consider the Fourier transform of the smoothing filter 11 (see (15))

F[If = Fih + h - j (22)

=1- --

This is a well known formula easy to derive directly from the equality

11=1-R 1 Note that smoothing does not require special factorizatn, so that

the smoothing solution is easier to find from the given data than the filtering

solution.
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Important Remark: When S,(w) is rational. S,(w) is rational and so is

Fjhj = 1 - 1 This can be readily implemented in (a variety of) state-

space forms, so that z can be "recursively computed", as noted by Whittle

((1963), p. 35) and others, independently of the direct state-space formulation of

Kalman and Bucy (1961).

2b. Finite Intervals - The Ambartzumian-Chandrasekhar Fquations

We shall next talk about the more difficult case of filtering stationary,

scalar processes defined on finite intervals. This may be considered the first

natural extension of Wiener's work and it began to be studied in the engineering

literature around 1950. shortly after Wiener's work became public (see. e.g.,

Zadeh and Ragazzini (1950)) The finite interval case presented a new challenge

because spectral factorization, in its traditional sense, does not work, and thus

researchers tried various other methods to find the solution (see. e g., Solodov-

nikov (1962)).

However, the astrophysicists V. A. Arnbartzumian (USSR) and S Chan-

drasekhar (USA) had already studied such problems in the mid-!940's, indepen-

dently of engineers, and had demonstrated that the Wiener-Hopf equation could

be replaced by an equivalent Riccati equation. Their results greatly simplified

the numerical computation of solutions, and since computation in those days

meant calculation by hand, they were considered to be a great success The

Ambartzumian-Chandrasekhar theory (see Chandrasekhar (1950)) dssumes that

the kernel of the Wiener-Hopf equation has of the form

0K(t - s)=f e 19-V*"w(a) da,

in which w(a) is some known function This form arose from the physical situa-

tion they considered, in which light incident at an angle a is propagating
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through a medium. If we assume that the light is incident at a finite number of

values a, so that uw(a) is a sum of 8-functions, the process ~V wIl have a

rational spectral density

~iat + (W4

The first result of the Anb artz umiani-Chand rase khar theory is that to solve

the Wiener-Hopf equation it suffices to find the solution Q(t .a,p) to a Riccati-

type partial differential equation

* a ,~f) = P +k Q~t~afl) + fQ(t~a.fl)u(fl) dif (25)

+ f Q(t ,a,)W(d) da' + f f Qta,'Qta')(wfi)doddf
0 0 0

Q can be computed by discretization of this equation to obtain a finite dimen-

sional system of ordinary Ricatti differential equations This has great computa-

tional advantages, though since it may be required to compute Q(t ,a,fl) for t, a

and ft ranging over a large set of values, this is still burdensome.

However using certain physical invariantce argumnent-;, Ambartzumian

(1943) was able to show that Q could actually be computed in terms of two func-

tions X(t ,y) and Yft r). of lu rather than three variables Then Chan-

drasekhar ('947) derived a pair of differential equations for X and Y, consider-

ably simpler than the original lVic ati equation (25)

t (.) f Y(t.t)-(ji) dft (26a)
of 0

OY(t.y) - t -

0

with

X(O-Y) Y(O-Y) 0 Y <" I
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Astrophysicists were quick to recognize the value of the recursive solution of the

equations (26) (see, e.g., Sobolev (1965), p. 79). The ideas of Ambartzumian and

Chandrasekhar were brought to the attention of applied mathematicians by the

extensive work of Bellman, Kalaba and their colleagues on what they called

invcwriant imbedding (see, e.g., Bellman and Wing (1975)). The equations (26)

were first introduced into the estimation literature by Casti, Kalaba and Murthy

(1972). Their extension to nonstationary processes was made bv Kail&dh (1973).

2e. Sobolev's Identity and The Krein-Levinson EquaUons

Fundamental work on the finite interval, stationary case did not end with

Ambartzumian and Chandrasekhar. In particular Sobolev (1965) went on to

address the problem of arbitrary K(t-s), for which a representation such as

(23) is not given, and he succeeded in developing a much more direct approach

His idea was to exploit the Toeplitz structure of K(t,s)=K(t-s) more deeply

than in the previous theory. By this approach, he established a very powerful

constraint on the Fredholm resolvent (smoothing kernel) H(t,s T) of a Toeplitz

kernel:

If A(T;t) is defined via the equation

F

A(T;t) + f A(T;u)K(u -t) du = K(T-t) 0!9- t !c T (27)

and B(Tt) via

T
90.) + f BTu)Ku - t) du = K(-t) 0 t T (26)

0

then Sobolev showed that

a -h+ - I!(t s:T) = A(Tt)A(Ts) - (29)

with
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A(T;t) = H(T,t;T) H'(t,T; T) (30a)

and

B(T;t) = H(O,t;T) = H'(t,O:T) (30b)

(Note that these equations are written for the general case of matrices K, H. A

and B.) Sobolev's identity shows that the resolvent H(s.t;T) is determined for

(t.s) [O. T]x[O. T] by its values on the boundaries of [0, TJx[O, T], i.e., by two

functions of one variable.

Sobolev's identity is even more striking in its integrated form, which, when

translated into operator form, is

I - H = (I- a')(J- a) - b "b (31)

where a and b are not only causal, but also Toeplitz. This means, for exam-

ple, that the iller determind by a,

(a), fa (t - s)-ys ds

is time-ianariat. Equation (31) is a useful modification of the formula (15a).

(!-H)=(I-h*)(-h), because it expresses 11 only in terms of time invariant

(causal and anticausal) operators, whereas h, even for Toeplitz K, is not gen-

erally time invariant Since time invariant filters are much easier to implement

than time-variant ones, it is reasonable to use a instead of h, whenever h

appears. Of course, an error is then incurred, but the remarkable implication of

(31) is that if a replaces h in (15a). the correction can again be made with a

time invariant filter b. Explicit formulas for a and b are as follows.

a(t) = A(T;t) (32a)

b(t) = F(T;T - t) . (32b)
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For more on the applications of this identity to smoothing and other prob-
lems, see Levy et al (1979) and Kailath et al. (1978)

Sobolev's identity also has important implications for fast computation of

the resolvent kernel H(,.s;T) because we need only develop an effTicient.

recursive method for updating the boundary values A(T;t) and H(T;t) of

H(t,s;T). In fact, Krein (1955) had obtained such equations, which we shall

present here in the special case or scalar processes:

-+ _) A(T;s) =-A(T;T - s)A(TO) . (36)

To see what this means, consider the natvc di. cretization, T=N A and

A( T + A;A + A) = A( TA) - A(T: T - iA)A(T,0)A (36)

which propagates as illustrated in the figure

S

0 T T+A

The one point not picked up by this scheme is A(T+AO) and so it is com-

puted by using the integral equation (27):

A(?' -;O) = f A(T + L;u)K(u) du + K(T + A) (37)
0

R'' A(T + A,iA)K(iA) + K(T + A)
t~i
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How fast is this algorithm? If T=N.A, it takes N+I multiplications to go from

T to T+A. Therefore, to generate the boundary out to T, takes

1+2+...+N=N(N+1)/2=O(N 2) multiplications. Without the Toeplitz structure,

we would need O(N s) operations to compute H(t ,s;T).

The above method of solving (36) via discretizaLton leads to recursions very

similar to those introduced for the prediction of discrete-time processes by

Levinson (1947) and since then widely studied in the signal processing literature.

We therefore call (36) a Krein-Levn som equation. Kailath, Ljung and Mort (1978)

have extended these techniques to nonstationary processes.

We should also mention that when a representation of K(t-s) in the

exponential form (23) is available, the Krein-Levinson equations can in fact be

reduced to the Ambartzumian-Chandrasekhar equations (cf. Kailath, Ljung, Morf

(1976)).

.1
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3. Some Fbiam pies - Nonstationary Processes

3. State Space Process Models - Kalman-Bucy Fllters

The most common approach to nonstationary process estimation is via

state-space models. It is assumed that the signal process zg can be described

as

z= Hizt (38a)

it =Fiz, + Giu , t to (38b)

where z is an nxl "state" vector, zs is a pxl vector and ug is an mxl

"white noise" vector. The observed process is

V, = xt + Ut (3Bc)

where is the observation noise v, such thatt

The initial state Zi0 is assumed to be random, with

E Zia = O, E x,0z t =110o (38e)

and furthermore, it is also assumed that

Eizt'o =0; Evsz 'o =0 for all t _-to , (38f)

Finally, the matrices ',,G,H,]-10 are all assumed to be known The above

assumptions ensure that

Evz =0 if s <t

They also ensure that x, is a Markov process, so that the signal zi is modeled

In the !iterature it is common to assum E u.i=Qd(t -S) and E t,v-=R, 6(t-s).
Rt >0, but without loss of generality we can rmake the convenient norrnah.atons of (M',ad)
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as a so-called projction of the Markov state process x1 . Such descriptions had

been widely used by physicists (see, e.g., the papers in Wax (1954)) and

mathematicians (see, e.g., Doob (1944), (1948)) for stationary processes with

rational power spectral densities. The extension to models with time-variant

coefficients, as in (38) above, is at least in retrospect fairly natural and it began

to be made in estimation theory in the late fifties by Lanirig and Battin (1958. p.

304), Stratonovich (1959), (1960). and most notably by Kalman (1950) and Kal-

man and Bucy (1961)

The celebrated Kalman-Bucy filter for the model (38) is

xz Fs r +Kg ve (39b)

i.=0 (39c)

Here v'g is the "innovation process",

v c- 1Hz, (39d)

which is known to be white with

E vv, 6(t s (39e)

The nxp matrix Kl, which we shall call the 'Kalnian gain,. can be computed as

K, = PIl Ill- Gi Cl (40a)

where the nxn matrix P, is th,_ covariance matrix of the errors,

P, = l ;:ZI'. ;.7 = X -Z ; . (40b)

Kalman and Bucy showed that I's could be recut ;ivcly determined as the

unique solution of the nonlint-ar lPirciti-Ly p( difTvrent ial equation

P, = Pill + P11/1 + (;,(, -AX . P,=:l (4 0c)
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This is all very well known to estimation theorists by now. It is perhaps not

so widely known that the recognition of the importance of state-space models

and Markov processes in signal estimation problems is due independently to

Stratonovich, who actually studied the nonlinear filtering problem, and, using

"Gaussian approximation" methods, derived what was later called the "extended

Kalman filter". For the linear case, Stratonovich gave an exact solution which is

exactly the Kalman-Bucy filter. However, no stability analysis was given and no

intensive study of the Riccati equation was made; these were the vital contribu-

tions of Kalman and Bucy.

It is often said that the reason for the wide applicability of the Kalman-Bucy

filter (in particular, to general time-variant models) is that giving a state-space

model avoids the difficult problem of "spectral factorization". This is totally

wrong! Canonical spectral, or in the nonstationary case "covariance", factoriza-

tion, results in a model that is not only causal but also causally invertible. This

is clearly not the case for the assumed model (38): knowledge of y = %, to<s<-tl

does not allow us to reconstruct u,v and zi 0 . Therefore to find the filter,

canonical factorization still has to be done in one way or another.

In fact, as we noted in Section 2c (cf. (14)), knowledge of the canonical

spectral factor should immediately determine the filter and vice versa. Here we

have the filter and could ask how to obtain the canonical factor The answer is

simple: just rewrite (39) in the form

ZT I Ftx I + Kti (41)

Vs = Hg + vi , xg0 
= 0

We see that (41) describes a causal and causally invertible relation between a

white noise input v and the desired process y. We call it the innovatioms

representation (IR) of y Thus the above equations determine the true
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canonical factor. But to find this factor, we have to do quite a bit of work, viz.,

solve the Riccati equation. In other words, assuming a state-space model does

not in any sense allow us to avoid determining the canonical filter (unless, of

course, we start with such a model).

A Remark on Derivations

By now numerous proofs of the Kalman-Bucy equations are available. In the

present context, it may be interesting to note that if

f =fh.(t,s)y. ds

then h.(t,s) obeys the Wiener-Hopf equation

h,,(t~s) + f h w(tr)K(r-,s) dr = K(t,s), tocs <t
0

where K(ts) can be readily computed from the given model (38)--in fact, see

(44) below. Some calculation will then 8how that

a- t-h.,(t,s) = [F(t) -Ihv(t.t)]h_,(t,s) , s < t

so that

= f [F(t) -h,(t ,t)H(t)]k,(t ,s)y, ds + h31 (t .t)yjy
= F(t)zt + hv(t,t)[y

t - H(t):,] ,

which will be the Kalman-Bucy equation (39a) when we show that hV(t,t)=Kt as

given by (40). We shall omit these calculations.

3b. State Space Covariance Models - Recursive Wiener Filters

While many different models JFCa,H,,QtQTI~o can yield the same covari-

ance function

R(t,s) = 36(t -s) + K(t,s)
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the impulse response of the canonical factor is known to be uniquely determined

by R(t.s). Therefore one would expect that it is possible to compute the Kal-

man gain K1 (which should not be confused with the term K(t,s) in the covari-

ance funtion) directly from the parameters of the covariance function R(t,s).

This can in fact be done (Kailath and Geesey, 1971), as can be seen by examining

the special form of the covariance function associated with a state-space model

of the form (38).

Let P(t,s) be the state transition matrix, which is the unique solution of

the linear differential equation

dl ~) = 'I~ t s , (s~s ) I
dt

Let ig be the nxn covariance matrix of xg,

1it = E xgZ , (42)

It is easy to check that I1 is the solution to the Lyapunov-type equation

fl, =F,11, + FI F1 + GIG;, (43)

with given initial value 1o By direct calculation we have

S 1"6(t -s) + H,¢D(t,s)N1. if t ;s
R g(t,s)= I 6(t -s) + N''(st)g15 if t 5s(

where

Nt = R, Hi + Qz Cc (45)

We will now assume that (only) Hf, P, and N, are known Define

E., := E ;,';1 1 (46)

If we recall that Pg =E z' ', where =xj -z g then the orthogonality of z

and 'g immediately yields the identity

Ti8 P, + S, (47)
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Therefore we can now rewrite the Kalman gain (cf. (39f)) as

K, P, Hi+ qijC = i1 11' + G1 C, -Et2Ht =N -EjH (48)

Moreover, note that

t = Fl t -Pt = Fig + ]tF'F + KKj ; Et,0 = 0  (49)

The equations, (48) and (49), determine K completely in terms of the parame-

ters IH,,F,N,, of the covariance function R(t,s).

We note that we have efTectively also obtained a recursive form of'the solu-

tion to the Wiener-Hopf integral equation (8) for estimating the signal z t from

yt, provided the covariance function R(t,s) is given in the (factored) form (44).

This provides a nice answer to the efforts of several investigators in the mid-

1950's attacking Wicner-llopf equations with nonstationary kernels (see, e.g.,

Dolph and Woodbury (i952), Shinbrot (1956), Zadeh and Miller (' 956), Laning and

Battin (1958)) We may thus call our solution (39), (48)-(49) a recursive fiener

filter as compared to the Kalman-Bucy filter (39)-(40)

The close connection we noted in Sec. Ic between the solution of the fiter-

ing problem and of the canonical factorization problem means that the above

results, especially (4') and (48)-(49), also give us an expression of the canonical

factor (innovations representation) directly in terms of the parameters of the

covarianee function. The notation z for the state of the model (40) is, of

course, just a reflection of the original noncanonical model (38) that we started

with, x has no particular significance if we are only given a process y with

covariance R=+K, and therefore it is preferable to rewrite (40) in a different

notation Following Faurre (1969), we shall write the canonical innovations

model as

F= I z, + Ke U , ZeC = 0 (boa)

y, fz + o. (bob)
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where

K =Ns -F. Hi (60c)

and E. obeys the Riccati equation

L g = P EI + Fq F; + K.8K., E.0 = 0 (~50d)

The value of our particular derivation of the IR is that it shows that of all

(causal) models of a given covariance triple JF1 ,Ht,N, , this one has the "smal-

lest" state variance matrix, because its state, zx, is the projection (on the

space spanned by ly, s <t ) of the state, xf. of any other model

There has been some interest in studying the set of all causal models asso-

ciated with a given covariance triple; in particular, one might ask by analogy

with the above for a mazimum-varuance causal model. It turns out that this

model can be defined via a certain smoothing problem, rather than a fillering

problem as for the minimum-variance mode: We refer to Kailath and Ljung

(1981) for a discussion of this result, and its implications for the so-called sto-

chmstic reul'zation problem of studying all causal models of a given process.

There have been a number of recent papers on this, see especially, the book of

Clerget, Faurre, Germain (1978), the thesis of Ruckebusch (1979), and Lindquist

and Picci (1 98131), which contains references to several of their earlier works.

3c. Orthogonal Decomposition of the Space of Random Variables

Here we shall continue instead with another aspect of the interplay between

smoothing and filtering theory, as brought out by a recent result of Weinert and

Desai (1980), which we car formulate as follows.

Given the state-space model (38), it is easy to see that we cannot recover

the "input" random variables {u1 ,l t z1 0 1 just from knowledge of the "output'

random variables ytd unless we have additional information The nice observa-
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tion of Weinert and Desai, is that this additional information can be provided by a

model 'adjoint' to (38) in a certain sense. In particular, define 17,B by the

equations

Xt - F;c- H~jX,0 (51a)

?7 - Gig+ i (bi b)

and

E)- 11 OXgo + Zgo (51c)

Then we can check by direct calculation that

E GyJ g0 , E xygv 0 (52)

and that the sets

ut-xijand ygam13G (b3)

can each be recovered from the other by causal linear operations In fact, this

latter equivalence can be seen by first combining the equations (38) and '5:)

into the set

= [ -I] x:J ()i -0a /1.1 (b.

Then, by elimination, we can write

with the -Lwo-point"' boundary value conditions

t = 0 , 10- I lox,. 0 (5)b)

Given 10y,7 we can solve this linear two-point. boundary value problem for

Jx,Xj and then calculate ii,,vg,x(Q) from (5lb,c),
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We can summarize the above discussion by saying that the result of Weinert

and Desai shows that the linear space of random variables spanned by Ju1 .vI ,x0J

can, at each t, be orthogona y decomposed into the space spanned by JytJ

and 1?,,Of

[The following remarks might help explain the origin of the above equations

The point is that given Jyt, to <ttf , we cannot reconstruct ug,v,zol but at

best only their smoothed estimates lu,,v For a full reconstruction we

must augment ycj by the errors l, ot.0Now some simple calculation,

which is facilitated and in fact illuminated by the use of operator notation, will

show that the It,@ as defined above span the same space as the lg#%.to[

Hence ...

Of the several interesting implications of the above results, we shall here

focus on just one.

3d. The Hamiltonian Equations and a Scattering Framework
for Estimation Theory

Consider the projection of the random variables in the equations (55) onto

the space spanned by yt, toat-;t;

Now, if we define

Atit, = X't 19 (56)

and note that the orthogonality properties (52) imply that , it/ 0 and 0,1, 0,

the equations (55) reduce to

-, [m, G + (57a)

with boundary conditions

X91 Itt
= 0 ;9019 = 1IO'loto (57b)
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These are the so-called Hamniltonian equatiors for linear estimation They

were first obtained by Bryson and Frazier (1963) in exploring a calculus of varia-

tions approach (maximizing a 'likelihood' function) to least-squares estimation.

Verghese. Friedlander and Kailath (1980) used them to develop a so-called

scattering theory approach to linear estimation. To introduce this, we shall for

convenience change notation in (57):

to -T, t -S, f t .

Then using Euler discretization, e g,

Sis= [Asi -+Al ]/i + o(A)

and the approximLtion

a +6
f y da =%A+ o(A),

we can obtain the following discrete approximation to (57):

1, = - GI+FiA [. AI t I + [HY (0a)

where we have, and shall in the future, consistently omit all o (A) terms. Note

the arguments of the X I, which are reversed from those of x.1t. Because of

this, we can depict (58) graphically as in Fig. 1, which suggests that we can

regard z( !t) as a forward wave and X( It) as a backward wave travelling

through an incremental section at s of some scattering medium specified by

the quantities

I + FA = the incremental forward transmission coefficient

I + FA = the incremental back/uard transmission coefficient

- H*HOA = the incremental left reflection coefficient

G6 G At the incremental right reflection coefficient



336 T. KAILATiI

and

H =y. the incremental internal backward source excitation.

X 1+

X(-rjt) ( t, X(tlt)

Xq(tt 77P 0t6tT (tt)

T t

FMgure 2. A macroscopic scattering section
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We can put together such incremental sections to get a macroscopic sec-

tion of the scattering medium from say s=- to s=t. This is shown in Fig. 2,

where, for reasons that will be clear very soon, we have denoted

010 (t .') = the forward transmission operator

lto(t .T) = the backward transmission operator

P0 ( ,i-) the right reflection operator

0 0 (t ,i) the left reflection operator

q (t,r) = the forward internal source (i.e., y.) contribution

go (t.i-) = the backward internal source contribution

The reasons for this notation can be seen by considering the effect of adding an

incremental section from t to f +-A, as shown in Fig. 3 By tracing paths

through the figure, we can write

00t+ Ar) = (I + FA)4i0 (t ,r) - (I +FA)P 0 H'HA1$0 (t ,T)

+ (I + FA)POHHPOH'HA
2 ,po(t,r) - -.

(I + FA)(I - P0 1-IHA + o (A)4i0 (t,-r) (59)

where ao(A) denotes terms that. go to zero faster than A as A-0O. Then we see

that

lim $0 t+A) - ,) = (F - P0 11 H)410 (t,,r) (60)

which identifies 4P0 (t 7-) as the state-transition matrix of F-P 0 H'H.

'Similarly, we can see by tracing paths through Figure 3 that

P0 (t + Ar) = GG'A + (1 + FA) (PO - POI-lHP0 A + o (A)) (I + FA) (61)

so that

P0 (t 4- Ar) - ,.)
limA= G + FPO0 + POY - PoHHP (62)
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which identifies POCL .r) as the solution of a Riccati differential equation. A

similar calculation will identify Oc(t ij as an observability Gramian of the

matric es jF-POH'H, H

0 0 I+FA

-C0O S 0 (t,r)' P 0  -IAGG'A

-T._P A#A# I
Tt t t+A

FIgure 3. To determaine the (forward) evolution equation of S0 (t .7-)

We shall collect these operators in a so-called scfLtte"i~ mautrix

SO(t r 0t.T) ( (63)
and our previous calculations show that

a -SO(.T ) (FPHHt 4PC+ (F+-PHH (64a)
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with initial conditions

STT = ri 0] (64 b)to I]

These initial conditions help to explain the subscript '0 on the various quanti-

ties above, and we can get some more insight into this by going back to the

boundary conditions of the original Hamiltonian equations and trying to incor-

porate them into our scattering picture The X, 1 1=0 condition means we have

no backwards incoming wave, while the condition

can be incorporated, as shown in Fig. 4. by adding a 'boundary' layer to the left

of the section S0 (t,-r) of Fig. 2.

One immediate result from this figure is that we can identify q .q~ as

the emerging waves from the medium when 1i0 =0. We shall denote these as

go-(t,r) = 0 (,r t), qo*(t,7) ;(t t) (65)

x -0  x x(,rJt) X(tjt)

boundary II A4 S 0 tp
1layer 0 S0t7

0-

I A(rlt) 06X*t=

Figure 4. Incorporating the boundary conditions.
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We shall now show how to derive forward differential equations for AD and

O and also backward equations as in (17)-(16) Por forward equations, we start

by adding an incremental section to the one in Fig. 4 (but with 11=0=xo). Doing

this gives the result shown in Fig. 5b.

Combining the signals in the two parts of Fig. 5a we obtain for the quantities

in the combined section of Fig. 5b, tne relations

NO(t it + A) = Xo(,rlt) + PoH'(V - H: o(t I t + A)A + o (A)

so that

(r t ) = 0(t ,'r)H(t)(y(t) - H(t);0 (t It)) (66)

Ci

So also, we can read off the relations

;0(t +Alt +A) = (I + F'A): (t lt +A)
: o(t It + A) = ;,(t It) + PH'(y - H;;o(t I t + A)) + o(A)

so that

; 0(t It) = F ;o(t It) + PoH'(y(t) - H(t)z:o(t It)) (67)

which can immediately be recognized as the Kalman-Bucy equation, thus

explaining the notation in (65). What we wished to illustrate here is that the

state-space filtering equations can be derived from the (scattering framework

based on the) Hamiltononian equations for the smoothed estimates which, of

course, is the opposite of the usual order.

There are many other illuminating consequences of the scattering picture,

which not only helps to organize in a very efficient way many of the special

results and identities associated with state-space estimation, and has led to new

results on backwards Markovian models, smoothing formulas, asymptotic pro-

perties, fast algorithms, decentralized estimation, etc. However, we shall
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content ourselves here with mention of the papers Kailath (197b), Ljurig. Kalath

and Friedlander (1976), Friedlander, Kailath and Ljung (1976), Verghese, Pried-

lander anid Kaiath (1980), Ligvy (198 1).

0 Lx 0 (tit) 14FL

- ~ x -'HA G'A

0 Tit + r,

Tt t ti-A
(a) Adding an incremental layer

0 xo x0 (tit+A) lI-FA t+I:'

-x 
0f - P 

-H IH A+

1H -(y-Hxo (tit+,,,))A 1 0

T t t ti-A

(b) The combined section showing the resulting
signals at different points

Nfture 5. Determining the forward evolution
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3e. Nonstationary Processes Studied as Processes Close to Stationary

In studying the Ambartzuniian-Chandrasekhar equations of Scc 2b and

especially their extension to nonstationary processes generated by constant.

coefficient state-space models (Kailath (1973)) in a scattering framework.

Kailath and Ljung (1975) noticed that the Sobolev and Krein-Levinson equations

of Sec. 2c could be extended to nonstationary processes by using the concept of

an index of nonstationarity of a kernel or process We shall briefly outline the

main idea here.

We first define a so-called displacement operator -1 by

_L + a _(8
Ot+ 4- 68

and we note that if K(t~s) = K(t -s) (and is di fferenti able), then

_1K = 0

For a non-stationary process we may have

~~K~t~s- a ()o~s < (69)

for some smallest a, and a family of functions ~().!For simplicity, we have

assumned p =1, i.e., scalar processes and scalar kernels.]

RExample 1.

For the Wiener process K(t,.;)=min(t~s) and 3=1

Example 2.

For a state-space model (38) with constant parameters, it can be shown

that a-9n, the dimension of the state space.
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Rample 3.

For a composition of kernels

T
(K1K2)(t ,s) f K 1(t ,u K~,s)d'u

we obtain the rule

-(KIK 2) = (-I K,)K 2 + KC..I K2) + K16OK2 - K16TK2 (70)

where

T

KgK2 f K(t.u)6(u - V)K2 (u,s) diu =K1(tg)K2(g~s)
0

The composition rule gives us an easy derivation of the Sobolev identity. For

this, we apply the displacement operator to the equation H-+H'K=K and use the

rule (70) to obtain, after some rearrangement, the result

(-I H)(I + K) = (I - H)-J K + H(OT - 6)

Noting that (14.K) -'=1-H and K(I+K)-'=H we then obtain

-JIH =:(I - JH)(-IK)(1 - H) + H(67- 6 0)H (71)

In the stationary case -1 K=0 and we have

-1H = H~H- H610 H

or written out

-4H(t,s;T) = H(tTJ)H(T~s;T) - H(t,0;7T)1(0,s;T) (72)

which is just the Sobolev identity (29) of Sec. 2c.

The interesting fact is that this identity can be extended to nonstationary

processes by using a slight modification of the representation (69) let us

rewrite (69) in the form

4K K(t.0) K(0.s) + t Aj d,(t)dA(s) =K~oK + * l. a (73)

k1=
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Substituting into (71) we will have

H = (I - H)(K6,K + DAhD,)(! - H) + H6rH - H60 H

= H6oH + (I - H)D.AA (I - H) + H6TH - H6cH

= H6TH + CIAC , say (74)

where C:=D(I-H), or equivalently, C satisfies the integral equation

C(1 + K) = D

Note that C will be a Ixa vector of functions, with a=1 in the stationary case.

Thus a can serve as a measure of nonstationarity of the process, and (74) is the

corresponding Sobolev identity for nonstationary processes. By simple further

calculations we can also obtain generalized versions of the Krein-l,evinson equa-

tions of Sec. 2c.

We refer to Kailath, Ljung, Morf (1976), (1978) for discussions of the compu-

tational aspects of these equations and of the role of the parameter a We

regret that reasons of space and time do not permit us to describe here results

on some efficient, so-called ladder-form, implementations of these equations.

These results allow us to carry over to processes without (finite-dimensional)

state-space models, the basic computational advantages of the state-space

assumption. These were briefly mentioned in the conference lectures; for more

details we refer to the theses of D. T. L. Lee (,980) and H. Lev-Ari (1981).

4. A Concluding Remark

In the nonlinear filtering problem, the state-space assumption has by no

means been as useful as in the linear case, since it leads to difficult nonlinear

stochastic partial differential equations. It may be that return to an input-

output formulation, perhaps based on the Wiener-Volterra reprsentation, can be

combined with analysis along the lines of Secs. 2c and 3le to make some compu-

tational progress in the nonlinear filtering problem
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